May 16, 2020

Will your next family car be made from carbon fiber? Ford thinks so

Ford
Ford Manufacturing
Carbon Fiber
Manufacturing Innova
Glen White
3 min
Ford is working alongside manufacturing firm DowAksa to research and develop high-volume manufacturing techniques for automotive-grade carbon fiber.
Ford is working alongside manufacturing firm DowAksa to research and develop high-volume manufacturing techniques for automotive-grade carbon fiber. The...

Ford is working alongside manufacturing firm DowAksa to research and develop high-volume manufacturing techniques for automotive-grade carbon fiber. The aim being to make vehicles lighter for greater fuel efficiency, performance and capability.

The companies will be part of the newly formed Institute for Advanced Composites Manufacturing Innovation, created by the U.S. government. The institute is part of the larger National Network for Manufacturing Innovation supported by the U.S. Department of Energy.

“Our collaboration with DowAksa and participation in this organization significantly boosts what we are able to achieve,” said Ken Washington, Ford vice president, Research and Advanced Engineering. “We have a true alliance of highly talented people working to take automotive materials to the next level.”

The mission of the institute and the goal of Ford’s collaboration with DowAksa is to overcome the high cost and limited availability of carbon fiber, while developing a viable, high-volume manufacturing process. Ford and Dow Chemical began working together in 2012 to develop low-cost, high-volume carbon fiber composites.

“This opportunity builds upon Ford’s current joint development agreement with Dow Chemical and accelerates our time line to introduce carbon fiber composites into high-volume applications,” said Jim deVries, Ford global manager, Materials and Manufacturing Research. “This collaboration helps us accelerate our efforts to create lighter automotive-grade composite materials that benefit customers by enabling improved fuel economy without sacrificing strength.”

“DowAksa’s technology and manufacturing expertise will help effectively overcome barriers to entry for the use of carbon fiber composites in high-volume automotive applications,” said Douglas Parks, DowAksa board member and a primary participant in the founding of the Institute for Advanced Composites Manufacturing Innovation. “The new institute provides a collaborative platform to accelerate our progress.”

Carbon fiber composites have been used in aircraft and racing cars for decades because they provide high strength with extremely low weight. Ford aims to being this technology to the mass market.

“Our goal is to develop a material that can greatly reduce vehicle weight in support of improved fuel economy for our customers,” said Patrick Blanchard, Ford supervisor, Composites Group. “The flexibility of the technology allows us to develop materials for all vehicle subsystems across the product line – resulting in a weight savings of more than 50 percent compared to steel.”

Creating lighter vehicles is a major part of Ford’s Blueprint for Sustainability to reduce fuel consumption and exhaust emissions. Current products that apply a light-weighting philosophy include Fiesta – which uses high-strength, lightweight boron steel. The all-new 2015 Ford F-150 uses high-strength, military-grade, aluminum alloy to help reduce overall weight by up to 700 pounds – returning an EPA-estimated 5 percent to 29 percent better fuel economy, depending on engine and driveline configuration on the combined cycle, along with best-in-class payload and tow ratings.

The Ford Lightweight Concept Fusion applied such lightweight materials as aluminum, high-strength steel, magnesium, composites and carbon fiber to nearly every vehicle system to reduce the car’s weight to that of a Fiesta – a near 25 percent cut.

Learning from this concept can springboard light-weighting technologies to a much larger scale of production. Ford and DowAksa also are working together to reduce the energy needed to produce carbon fiber components, cut the cost of raw materials and develop recycling processes. 

Share article

Jun 17, 2021

Siemens: Providing the First Industrial 5G Router

Siemens
5G
IIoT
Data
3 min
Siemens’ first industrial 5G router, the Scalancer MUM856-1, is now available and will revolutionise the concept of remote control in industry

Across a number of industry sectors, there’s a growing need for both local wireless connectivity and remote access to machines and plants. In both of these cases, communication is, more often than not, over a long distance. Public wireless data networks can be used to enable this connectivity, both nationally and internationally, which makes the new 5G network mainframe an absolutely vital element of remote access and remote servicing solutions as we move into the interconnected age. 

 

Siemens Enables 5G IIoT

The eagerly awaited Scalance MUM856-1, Siemens’ very first industrial 5G router, is officially available to organisations. The device has the ability to connect all local industrial applications to the public 5G, 4G (LTE), and 3G (UMTS) mobile wireless networks ─ allowing companies to embrace the long-awaited Industrial Internet of Things (IIoT). 

Siemens presents its first industrial 5G router.
Siemens presents the Scalance MUM856-1.

The router can be used to remotely monitor and service plants, machines, as well as control elements and other industrial devices via a public 5G network ─ flexibly and with high data rates. Something that has been in incredibly high demand after being teased by the leading network providers for years.

 

Scalance MUM856-1 at a Glance

 

  • Scalance MUM856-1 connects local industrial applications to public 5G, 4G, and 3G mobile wireless networks
  • The router supports future-oriented applications such as remote access via public 5G networks or the connection of mobile devices such as automated guided vehicles in industry
  • A robust version in IP65 housing for use outside the control cabinet
  • Prototypes of Siemens 5G infrastructure for private networks already in use at several sites

 

5G Now

“To ensure the powerful connection of Ethernet-based subnetworks and automation devices, the Scalance MUM856-1 supports Release 15 of the 5G standard. The device offers high bandwidths of up to 1000 Mbps for the downlink and up to 500 Mbps for the uplink – providing high data rates for data-intensive applications such as the remote implementation of firmware updates. Thanks to IPv6 support, the devices can also be implemented in modern communication networks.

 

Various security functions are included to monitor data traffic and protect against unauthorised access: for example, an integrated firewall and authentication of communication devices and encryption of data transmission via VPN. If there is no available 5G network, the device switches automatically to 4G or 3G networks. The first release version of the router has an EU radio license; other versions with different licenses are in preparation. With the Sinema Remote Connect management platform for VPN connections, users can access remote plants or machines easily and securely – even if they are integrated in other networks. The software also offers easy management and autoconfiguration of the devices,” Siemens said. 

 

Preparing for a 5G-oriented Future

Siemens has announced that the new router can also be integrated into private 5G networks. This means that the Scalance MUM856-1 is, essentially, future-proofed when it comes to 5G adaptability; it supports future-oriented applications, including ‘mobile robots in manufacturing, autonomous vehicles in logistics or augmented reality applications for service technicians.’ 

 

And, for use on sites where conditions are a little harsher, Siemens has given the router robust IP65 housing ─ it’s “dust tight”, waterproof, and immersion-proofed.

 

The first release version of the router has an EU radio license; other versions with different licenses are in preparation. “With the Sinema Remote Connect management platform for VPN connections, users can access remote plants or machines easily and securely – even if they are integrated in other networks. The software also offers easy management and auto-configuration of the devices,” Siemens added.

 

Share article