Dec 7, 2020

What Quantum Computing Could Mean for Manufacturing

Manufacturing
Quantum Computing
Association Quantum
Speedel
Rachael Hopwood-Jarvis & Visha...
6 min
The potential impact of quantum
In this Manufacturing Global exclusive, we walk you through the potential impact of quantum computing on the manufacturing industry...

Over the past twenty years, quantum computing has evolved from a speculative playground into an experimental race. The drive to build real machines that exploit the laws of quantum mechanics, and to use such machines to solve certain problems much faster than is possible with traditional computers, will have a major impact in several fields including manufacturing.

An Introduction to Quantum Computing

There are a few concepts to keep in mind with regards to quantum computing. Understanding these concepts requires a certain level of suspension of belief: 

  1. How information is represented: Traditional computing technology (such as the device you are using to read this) represents information through a huge series of ‘bits’. Each bit has binary states so can be either 1 or 0. In a quantum computer, information is represented through quantum bits (qubits) – and each qubit can be in a virtually infinite number of states between 1 and 0, including both 1 and 0 at the same time! This concept is called superposition.  
  2. How information is processed: In traditional computing, information is processed sequentially; similar to the way a human would read a book. However, a quantum computer will process the entire contents of the book at once, instantaneously. 
  3. How bits are interconnected: In a quantum computer, qubits can be interconnected to each other such that they can influence their particular states instantaneously – and this is the case even if the qubits are large distances apart. This concept is called entanglement. 

At the risk of oversimplification, one can conceptualise a quantum processing unit as a series of interconnected coins that are spinning – i.e. each coin (or qubit) is in multiple states until it has been measured, at which point it settles into one state (either heads or tails) – and coins (or qubits) that are entangled will influence each other on the states that they settle into. 

Put simply, quantum computers (through entangled qubits that can be in superposition) have the ability to simultaneously process an exponentially larger range of values at the same time, when compared to classical computers. As a result, quantum computers will: 

  1. Solve some of the most computationally intensive problems of today thousands of times faster than classical computers 
  2. Solve problems that we know of today, but we cannot solve optimally because we simply don’t have the computational capabilities to do so with classical computing. 
  3. Solve a whole new class of problems that we haven’t even imagined the use for today

“It’s important to remember that comparing a classical computer to a quantum computer is essentially like comparing a candle to a lightbulb or bicycle to a jet plane. Quantum computing is a completely new paradigm shift that opens up a range of possibilities” says Vishal Shete, Head of Quantum Value Creation at Sia Partners.

Within manufacturing, when quantum computing’s predicted capabilities come to fruition, industries like aerospace and electronics could benefit from:

  • Batteries that offer a significantly higher energy density
  • Materials with more advantageous strength-to-weight ratios
  • More efficient synthetic and catalytic processes that could help with energy generation or carbon capture.

Quantum for Design

Today, computer simulation plays an important role in the design and pre-testing of products. Hardware components in many industries are routinely 3D-modeled with individual engineering safety margins. However, problems arise when these margins accumulate, resulting in products that are overweight, over-engineered, or higher cost than necessary. This potentially hampers all commercial viability.

In future, quantum computers could simulate component interactions within complex hardware systems. IBM predicts that this intervention could enable load paths, noise, vibration, and system loads to be calculated in a more precise and accurate manner. This kind of integrated analysis can optimise the manufacturing of individual components in the context of the overall system, reducing the cumulative impact of numerous individual safety margins and improving cost without sacrificing system performance.

Quantum for Control

Manufacturing control processes can be extremely complicated, often testing the limits of advanced analytics. This is particularly the case when employing machine learning and needing to analyse multiple variables.

Quantum computing, combined with machine learning, could impact manufacturing in the following ways:

  • Enabling faster optimisation runs by allowing production lines to perform optimisations more dynamically. This would be particularly useful for production flows and robotics scheduling of complex products where simulation and optimisation are computer-intensive.
  • Allowing manufacturers to go beyond the current limitations of the classical computational wall. While semiconductor chip fabrication already integrates simple multivariable analysis and machine learning into its processes, classical computing has hit a computational wall. Quantum could help overcome this bottleneck by analysing additional interactive factors and processes to increase production yields.
  • Offering the capability to analyse more complex software systems than classical computers could evaluate today. Software development relies on sophisticated software validation, verification, and fault analysis. Visual Capitalist notes that a high-end car could have 100 million lines of code, further highlighting the need to explore the potential for quantum. 

Quantum for Supply Chain and Logistics

Quantum computing could potentially transform the supply chain landscape to optimise vendor orders and improve accompanying logistics using dynamic real-time decision-making. 

Supply chains are evolving at rapid rates. The shift from linear models to a more responsive organic model based on real-time market demands and availability of key components creates real potential for quantum computing. Used alongside other technologies in the supply chain toolbox, quantum computing could accelerate decision making and enhance risk management, resulting in lower operational costs and a reduction in lost sales because of out-of-stock or discontinued products.

Speedel, a UK B2B courier firm, is one company already excited about the impact of quantum for logistics and supply chain managers.

“Quantum computing may offer logistics teams an opportunity to plan more sustainable and financially-savvy routes,” says Shiraz Sidat, Operations Manager at Speedel.

“Where a company plans to ship orders using a large number of vehicles across multiple possible routes, classical computers can become overwhelmed with the quintillions of options. Quantum’s ability to solve much larger problems means that logistics planners can quickly determine the best routes using less energy and in a shorter time frame.”

“Operations managers need not become overwhelmed by the science, but rather identify the real-world application of quantum and its ability to streamline the logistics and supply chain landscape” he adds.

What Should Manufacturers Do Today?

Understanding how quantum technologies may or may not change the world is like trying to assess the impact of the internet back in the early 1990s. Enormous numbers of possibilities come to mind, and many potential applications haven’t been imagined yet.

The quantum landscape can seem intimidating at first. But rather than getting lost in rabbit holes, it is important to:

  • Keep the focus on the problem types that can be enabled by this technology in the short, medium and long term, rather than getting overly tied up in the underlying technicalities. 
  • Keep an open mind to imagine and develop new use cases that can be made possible with this technology. Identify your highest-value problems and explore the potential applications of quantum for your specific industry.
  • Work with partners to accelerate your knowledge, capability and results in this space. You could identify like-minded research labs, quantum technology providers, quantum application developers and coders, or educational groups. Association Quantum is a great example of an organisation committed to raising awareness and boosting knowledge around quantum computing. The non-profit organisation comprises many industry figures and academics in North America and Europe.

While the quantum road ahead may be long and winding, being late to the party may mean that organisations may have missed out on some of the gains that are possible. Value can be extracted today by applying early-stage quantum technologies to solve the appropriate real-world problems faced by manufacturers.

Share article

Jun 17, 2021

Siemens: Providing the First Industrial 5G Router

Siemens
5G
IIoT
Data
3 min
Siemens’ first industrial 5G router, the Scalancer MUM856-1, is now available and will revolutionise the concept of remote control in industry

Across a number of industry sectors, there’s a growing need for both local wireless connectivity and remote access to machines and plants. In both of these cases, communication is, more often than not, over a long distance. Public wireless data networks can be used to enable this connectivity, both nationally and internationally, which makes the new 5G network mainframe an absolutely vital element of remote access and remote servicing solutions as we move into the interconnected age. 

 

Siemens Enables 5G IIoT

The eagerly awaited Scalance MUM856-1, Siemens’ very first industrial 5G router, is officially available to organisations. The device has the ability to connect all local industrial applications to the public 5G, 4G (LTE), and 3G (UMTS) mobile wireless networks ─ allowing companies to embrace the long-awaited Industrial Internet of Things (IIoT). 

Siemens presents its first industrial 5G router.
Siemens presents the Scalance MUM856-1.

The router can be used to remotely monitor and service plants, machines, as well as control elements and other industrial devices via a public 5G network ─ flexibly and with high data rates. Something that has been in incredibly high demand after being teased by the leading network providers for years.

 

Scalance MUM856-1 at a Glance

 

  • Scalance MUM856-1 connects local industrial applications to public 5G, 4G, and 3G mobile wireless networks
  • The router supports future-oriented applications such as remote access via public 5G networks or the connection of mobile devices such as automated guided vehicles in industry
  • A robust version in IP65 housing for use outside the control cabinet
  • Prototypes of Siemens 5G infrastructure for private networks already in use at several sites

 

5G Now

“To ensure the powerful connection of Ethernet-based subnetworks and automation devices, the Scalance MUM856-1 supports Release 15 of the 5G standard. The device offers high bandwidths of up to 1000 Mbps for the downlink and up to 500 Mbps for the uplink – providing high data rates for data-intensive applications such as the remote implementation of firmware updates. Thanks to IPv6 support, the devices can also be implemented in modern communication networks.

 

Various security functions are included to monitor data traffic and protect against unauthorised access: for example, an integrated firewall and authentication of communication devices and encryption of data transmission via VPN. If there is no available 5G network, the device switches automatically to 4G or 3G networks. The first release version of the router has an EU radio license; other versions with different licenses are in preparation. With the Sinema Remote Connect management platform for VPN connections, users can access remote plants or machines easily and securely – even if they are integrated in other networks. The software also offers easy management and autoconfiguration of the devices,” Siemens said. 

 

Preparing for a 5G-oriented Future

Siemens has announced that the new router can also be integrated into private 5G networks. This means that the Scalance MUM856-1 is, essentially, future-proofed when it comes to 5G adaptability; it supports future-oriented applications, including ‘mobile robots in manufacturing, autonomous vehicles in logistics or augmented reality applications for service technicians.’ 

 

And, for use on sites where conditions are a little harsher, Siemens has given the router robust IP65 housing ─ it’s “dust tight”, waterproof, and immersion-proofed.

 

The first release version of the router has an EU radio license; other versions with different licenses are in preparation. “With the Sinema Remote Connect management platform for VPN connections, users can access remote plants or machines easily and securely – even if they are integrated in other networks. The software also offers easy management and auto-configuration of the devices,” Siemens added.

 

Share article