May 16, 2020

The importance of agile design in the automotive industry

auto industry
5 min
The importance of agile design in the automotive industry
The automotive sector is one the worlds most important industries. It spends over £66 billion annually on research and development, it employs aro...

The automotive sector is one the world’s most important industries. It spends over £66 billion annually on research and development, it employs around 12.9 million people in Europe and, at over £1.3 trillion a year, its value is surpassed by only four economies.

Despite its success, the sector faces challenges. Consumer behaviour is leading to demands for connected, smart and autonomous vehicles. A modern car is a high-tech machine and automotive companies are busy trying to reinvent our driving experience.

Software will only continue to grow in importance as we progress to fully autonomous vehicles. Indeed, it’s a key reason why car design is becoming so much more complex than it was before.

The tech arms race

The automotive industry finds itself in a race to develop smarter and, ultimately, autonomous vehicles. Indeed, it’s a key reason why car design is becoming so much more complex than it was before.

New ways of working needed

As more next generation vehicles hit the roads, it is a reminder that car companies must simplify vehicle development processes and shorten development cycles by prototyping in more agile and efficient ways.

This agility can be achieved by creating digital clones of new models. These models enable much of the development and testing to take place in the virtual world and thereby accelerating the design, test and approve cycle.

To move to a digital design environment, we recommend five steps:

Creating the digital twin of the car is only the first step. To achieve the best product development, it is important to create a digital
enterprise designed to foster innovation.

More clean-sheet design

Clean-sheet design is an approach used widely in aerospace. The aerospace companies host projects, teams and suppliers on a modular but integrated set of tools to reinvent every aspect of the plane. While particular softwares are used extensively in the auto industry, we believe that the scope and capabilities of these need to change. The reason for this is that, with every area of design being scrutinised, it’s essential to coordinate change between different functional areas to ease complexity. Tools must make it easier to unite development packages in a single product design and simulation environment; create and update technical documentation; configure and manage bills of materials; and coordinate people and processes towards shared goals.

The software era

We’re progressing towards fully autonomous vehicles and, as we move down that path, the million or so lines of software code we have now will explode. Safety is an especially interesting area. From the alert and lane crossing systems we have today, we’re moving towards more advanced driver observation applications. For example, wearable technology can link to the car’s system to observe stress and tiredness levels, with the vehicle taking over more tasks – including driving if the driver’s awareness is becoming compromised. In addition, in the event of a crash, sensors will communicate the location, severity and possible injuries of occupants to blue light services. This is complex automation and writing, testing, amending and monitoring software code is a time-intensive task that must be simplified to help ease change management and compress development cycles.

Integrate Computer Aided Engineering and Computer Aided Design (CAD): We are seeing increasing need to align design and engineering analysis activities along with integrating this with vehicle testing and simulation. By using 1D and 3D digital models in vehicle prototyping time can be significantly reduced because it’s impossible to physically validate all the components, designs and parts when design validation happens in an iterative way. By integrating the virtual and physical world, we can understand component performance prior to signing-off on fabrication to help cut product development costs and timelines.

Model the software: Given the importance of software in automotive, it’s imperative to make it much easier to create, document, store and run tests on codes. An integrated software environment makes it easier to develop and manage embedded software from project inception to end-of-life and make this process integral to the overall vehicle development plan. This enables management of large-scale software deployments while ensuring traceability and error checking.

Execute change: With the massive amount of change requests that happen in a global program launch, it’s vital to better connect engineering and manufacturing systems.

Engineering and manufacturing must work together to determine what type of tooling and operations changes are required to handle different vehicle configurations. A digital project management platform makes it easier to combine product engineering, manufacturing engineering and shop floor execution into integrated systems. The visibility and control provided by uniting these capabilities in one interface helps cut complexity to get to market faster and ensure that, when the product is launched, the right processes – and process controls – are in place. 

Complexity and control 

There’s no doubt that automotive design and production is becoming much more complex. And while technology, in the form of complicated software interactions, is a root cause of this challenge, it has the potential to provide the answer.

A cohesive suite of tools across design, testing, simulation, production and execution analytics, means it’s much easier to manage virtual teams, contain costs, and automate and validate development processes.

As the industry enters a period of intense investment and competition, the likes of which we have not seen before, smart innovation portfolios can help automotive teams design, engineer, manufacture, and most importantly, achieve innovation. 

Kirk Gutmann is the SVP of industry strategy at Siemens PLM Software

Share article

Jun 8, 2021

IMF: Variants Can Still Hurt Manufacturing Recovery

Elise Leise
3 min
The International Monetary Fund (IMF) claims that while markets are rising and manufacturing is coming back, it’ll push for global immunisation

After a year of on-and-off manufacturing in the US, UK, and the eurozone, demand for goods surged early last week. Factories set growth records in April and May, suppliers started to recover, and US crude hit its highest price point since pre-COVID. As vaccination efforts immunise much of the US and UK populations, manufacturers are now able to fully ramp up their supply chains. In fact, GDP growth could approach double-digits by 2022

Now, the ISM productivity measure has surpassed the 50-point mark that separates industry expansion from contraction. Since U.S. president Biden passed his US$1.9tn stimulus package and the UK purchasing managers index (PMI) increased to 65.6, both sides of the Atlantic are facing a much-welcomed manufacturing recovery. 

Lingering Concerns Over COVID

Even as Spain, France, Italy, and Germany race to catch up, and mining companies pushed the FTSE 100 index of list shares to a monthly high of 7,129, some say that UK and US markets still suffer from a lack of confidence in raw material supplies. Yes, the Dow Jones has made up its 19,173-point crash of March 2020, and MSCI’s global stock index is at an all-time high. 

Yet manufacturers around the world realise that these wins will be short-lived until pandemic supply chain bottlenecks are solved. If we keep the status quo, consumers will pay the price. In April, inflation in Germany reached 2.4%, and across the EU’s 19 member countries, overall prices have increased at an unusual pace. Some ask: Is this true recovery? 

IMF: Current Boom Could Falter

Even as Elon Musk tweeted about chip shortages forcing Tesla to raise its prices, UK mining demand skyrocketed; housing markets lifted; and the pound sterling gained value. The International Monetary Fund (IMF), however, cautioned that manufacturing recovery won’t last long if COVID mutates into forms our vaccinations can’t touch. Kristalina Georgieva, Washington’s IMF director, noted that fewer than 1% of African citizens have been vaccinated: “Worldwide access to vaccines offers the best hope for stopping the coronavirus pandemic, saving lives, and securing a broad-based economic recovery”. 

Across the globe, manufacturing companies are keeping a watchful eye on new developments in the spread of COVID. Though US FDA officials don’t think we’ll have to “start at square one” with new vaccines, the March 2021 World Economic Outlook states that “high uncertainty” surrounds the projected 6% global growth. Continued manufacturing success will in large part depend on “the path of the pandemic, the effectiveness of policy support, and the evolution of financial conditions”. 

Mathias Cormann, secretary-general of the Organisation for Economic Co-Operation and Development (OECD) concurred—without global immunisation, the estimated economic boom expected by 2025 could go kaput. “We need to...pursue an all-out effort to reach the entire world population”, Australia’s finance minister added. US$50bn to end COVID across the world, they imply, is a small investment to restart our economies.

Share article