May 16, 2020

How additive manufacturing is changing the aerospace landscape

Pratt & Whitney
Additive Manufacturing
Aerospace Manu
Glen White
4 min
How 3d printing is changing the aerospace sector.
Everyone is talking about 3D printing and how it will revolutionize our world, particularly in the realm of manufacturing. From toys to jewelry to prost...

Everyone is talking about 3D printing and how it will revolutionize our world, particularly in the realm of manufacturing.  From toys to jewelry to prosthetic limbs, additive manufacturing is creating thousands of opportunities for individuals and businesses to easily manufacture products that address their needs.

But 3D printing isn’t a novel concept for all manufacturers, as some firms have been utilizing the technology for years.  For the aerospace sector, where small reductions in weight can mean large savings in fuel costs, the ability to create lightweight, cost-friendly components is transforming the industry.

US-based aerospace manufacturer Pratt & Whitney (P&W) has created the first working aero-engine to use additively manufactured parts.  The PurePower PW1500G contains 24 such parts, from simple brackets to complex central engine components that were designed to withstand high temperatures.  The PurePower engine powered a Bombardier CSeries plane successfully through a 2013 test flight and is scheduled to enter into service in 2015.

The concept of additive manufacturing involves using lasers to fix layers of powdered metal into a digital mould.  It has been around in various incarnations for over thirty years.  Stereolithography was first commercialized in the States in the 1980’s.  The 90’s brought new developments in 3D printing methods such as laser sintering, as rapid prototyping became more common.  In the early 2000’s, when engineers began realizing that these technologies could be applied to manufacturing, the term additive layer manufacturing (or ALM) was officially coined.

P&W’s Geared Turbofan (GTF) engine is revolutionary for the industry.  The first series of P&W engines that utilizes powder-bed additive manufacturing, it now has more than 5,000 engine orders and commitments, including options.

Geared Turbofan engines use a reduction gearbox to connect the fan at the front end of the engine to the low-pressure shaft.  The cooling mechanism enables the turbines to run at higher speeds than more conventional turbofans.  Built-in advanced cooling technologies help prevent damage to the device’s metal components, leading to a reduced fuel consumption of up to 16 percent and a 75 percent reduction in noise output.

Using this method, designs can be made in a fraction of the time required by traditional techniques and changed at the touch of a button.  There is minimal waste involved, which leads to a reduction in costs.  ALM reduces consumption of raw materials by up to 50 percent compared with traditional techniques such as forging or casting.  These are significant savings, given the costs involved with aerospace-grade metals.  ALM is also more adaptable than other methods and can therefore be used to produce more detailed designs.

The weight savings on components are also substantial.  The ratio between the weight of the raw material used to make a part and the weight of the finalized part can be up to 20 to 1.  Using ALM can reduce the ratio to less than 2 to 1.

P&W has used ALM to make more than 100,000 parts and prototypes to date, including casting patterns, tooling and test rig hardware.  Since its inception, more than 2,000 metal prototypes have been made for use in developmental engine programs.

P&W is using the titanium and alloys it already uses on its engines, modifying the additive manufacturing process to create properties more consistent with its current materials.  This process involves a number of steps. 

First, an engineer prepares a build file. A 3D CAD design is created for each part and then split into layers about 0.1mm thick, which are then grown in a bed of metal powder.  The powder is then melted by a laser or electron beam that follows the shape highlighted by the initial CAD design.

The chamber space is lowered and concealed with another coat of powder before the process is repeated. When the components have grown, any leftover powder is cleared from the component and re-used to make another part.

ALM does have its limitations. Scale can be an issue, as casting techniques produce high volumes cheaply. But as the investment in technology continues, the efficiency and cost savings of ALM are increasing.

The flexibility and cost-savings delivered by ALM will revolutionize the aerospace industry in the future.  Further research is being conducted, such as at the University of Connecticut Research Center, where researchers are looking into how to improve and optimize the ALM process for specific parts and alloys.  Researchers are focusing on powder size and purity, the number of times it can be used before it requires cleaning, the process parameters of power input and laser speed.

Pratt & Whitney have big plans for ALM and expect the technology to play an increasingly broad role in its manufacturing process, where it can support their overall goal to make products that are both greener and more efficient for their growing customer base.

Share article

Jun 8, 2021

IMF: Variants Can Still Hurt Manufacturing Recovery

Elise Leise
3 min
The International Monetary Fund (IMF) claims that while markets are rising and manufacturing is coming back, it’ll push for global immunisation

After a year of on-and-off manufacturing in the US, UK, and the eurozone, demand for goods surged early last week. Factories set growth records in April and May, suppliers started to recover, and US crude hit its highest price point since pre-COVID. As vaccination efforts immunise much of the US and UK populations, manufacturers are now able to fully ramp up their supply chains. In fact, GDP growth could approach double-digits by 2022

Now, the ISM productivity measure has surpassed the 50-point mark that separates industry expansion from contraction. Since U.S. president Biden passed his US$1.9tn stimulus package and the UK purchasing managers index (PMI) increased to 65.6, both sides of the Atlantic are facing a much-welcomed manufacturing recovery. 

Lingering Concerns Over COVID

Even as Spain, France, Italy, and Germany race to catch up, and mining companies pushed the FTSE 100 index of list shares to a monthly high of 7,129, some say that UK and US markets still suffer from a lack of confidence in raw material supplies. Yes, the Dow Jones has made up its 19,173-point crash of March 2020, and MSCI’s global stock index is at an all-time high. 

Yet manufacturers around the world realise that these wins will be short-lived until pandemic supply chain bottlenecks are solved. If we keep the status quo, consumers will pay the price. In April, inflation in Germany reached 2.4%, and across the EU’s 19 member countries, overall prices have increased at an unusual pace. Some ask: Is this true recovery? 

IMF: Current Boom Could Falter

Even as Elon Musk tweeted about chip shortages forcing Tesla to raise its prices, UK mining demand skyrocketed; housing markets lifted; and the pound sterling gained value. The International Monetary Fund (IMF), however, cautioned that manufacturing recovery won’t last long if COVID mutates into forms our vaccinations can’t touch. Kristalina Georgieva, Washington’s IMF director, noted that fewer than 1% of African citizens have been vaccinated: “Worldwide access to vaccines offers the best hope for stopping the coronavirus pandemic, saving lives, and securing a broad-based economic recovery”. 

Across the globe, manufacturing companies are keeping a watchful eye on new developments in the spread of COVID. Though US FDA officials don’t think we’ll have to “start at square one” with new vaccines, the March 2021 World Economic Outlook states that “high uncertainty” surrounds the projected 6% global growth. Continued manufacturing success will in large part depend on “the path of the pandemic, the effectiveness of policy support, and the evolution of financial conditions”. 

Mathias Cormann, secretary-general of the Organisation for Economic Co-Operation and Development (OECD) concurred—without global immunisation, the estimated economic boom expected by 2025 could go kaput. “We need to...pursue an all-out effort to reach the entire world population”, Australia’s finance minister added. US$50bn to end COVID across the world, they imply, is a small investment to restart our economies.

Share article