Aug 20, 2020

Arm: Four Steps to Embedded Connectivity

Arm
Supply Chain
Digital Transformation
Manufacturing
Sean Galea-Pace
2 min
Manufacturing Global explores arm’s whitepaper to find out how eSIM can equip manufacturers with a competitive advantage
Manufacturing Global explores arm’s whitepaper to find out how eSIM can equip manufacturers with a competitive advantage...

Arm believes that 1 trillion new IoT devices will be produced by 2035, and an increasing number of device manufacturers are helping make this prediction become reality. Following discussions with global companies, Arm recognises that complexity can be a barrier to larger IoT projects. Manufacturers can reduce much of this complexity by providing devices with embedded connectivity that ‘just works’. Whether you manufacture smart logistics devices (sensors, trackers, pallets etc) or any product with an embedded eSIM chip as a tracking and connectivity technology, the following elements need to be addressed. 

Elements required for embedded connectivity

1. Take an eSIM

At 5x6 millimeters, the eSIM is around half the size of the Nano (4FF) SIM card. Unlike removable SIM cards, the eSIM is embedded during the manufacturing process – soldered into a sealed enclosure. It is extremely difficult to tamper with or remove an eSIM without causing significant damage to a device. An eSIM is also water resistant, an essential feature for any ruggedized IoT applications and especially so for the logistics industry. As an example, an end user may need a pallet shipped worldwide in incredible adverse conditions, resulting in the device being inaccessible for weeks at a time. 

2. Add a bootstrap profile

Every eSIM is configured with a bootstrap profile. The bootstrap profile guarantees that the device can obtain connectivity, regardless of its geographic location, and be used to download local network profiles when a device is first turned on. It may also be used as a fall-back profile if there are network issues in the location where the device has been deployed. This is particularly useful for smart tracking devices that will require automatic initial connectivity as they cross geographical regions. 

3. Link a management platform

A software platform that manages eSIMs is key to scaling IoT logistics deployments. The simplicity and automation provided by a connectivity management platform make it possible to enroll, deploy, maintain and track thousands of devices remotely. This is critical for logistics solutions, as the sheer number of devices which are deployed globally continues to scale exponentially. 

4. Choose a network

The ability to change network operators without physical interaction is a major benefit of eSIM. A global network of MNOs is an important component of the eSIM ecosystem because no one operator provides the coverage to support a global supply chain. A manufacturer of smart logistics devices can provide the device with the bootstrap profile and let their customers choose the network that best supports their needs post-deployment, or remotely change operators as the needs of the deployment changes. 

Interested in reading more? Check out Arm’s full whitepaper here!

Share article

May 12, 2021

Gartner: Leaders Lack Skilled Smart Manufacturing Workers

SmartManufacturing
DigitalTransformation
DigitalFactory
ConnectedFactory
2 min
57% of manufacturing leaders feel that their organisations lack the skilled workers needed to support smart manufacturing digitalisation

With organisations rapidly adopting industry 4.0 capabilities to increase productivity, efficiency, transparency, and quality as well as reduce cost, manufacturers “are under pressure to bring their workforce into the 21st century,” says Gartner.

While more connected factory workers are leveraging digital tools and data management techniques to improve decision accuracy, increase knowledge and lessen variability, 57% of manufacturing leaders feel that their organisations lack the skilled workers needed to support their smart manufacturing digitalisation plans.

“Our survey revealed that manufacturers are currently going through a difficult phase in their digitisation journey toward smart manufacturing,” said Simon Jacobson, Vice President analyst, Gartner Supply Chain practice.

“They accept that changing from a break-fix mentality and culture to a data-driven workforce is a must. However, intuition, efficiency and engagement cannot be sacrificed. New workers might be tech-savvy but lack access to best practices and know-how — and tenured workers might have the knowledge, but not the digital skills. A truly connected factory worker in a smart manufacturing environment needs both.”

Change Management

Surveying 439 respondents from North America, Western Europe and APAC, Gartner found that “organisational complexity, integration and process reengineering are the most prevalent challenges for executing smart manufacturing initiatives.” Combined they represent “the largest change management obstacle [for manufacturers],” adds Gartner.

“It’s interesting to see that leadership commitment is frequently cited as not being a challenge. Across all respondents, 83% agree that their leadership understands and accepts the need to invest in smart manufacturing. However, it does not reflect whether or not the majority of leaders understand the magnitude of change in front of them – regarding technology, as well as talent,” added Jacobson.

Technology and People

While the value and opportunities smart manufacturing can provide an organisation is being recognised, introducing technology alone isn’t enough. Gartner emphasises the importance of evolving factory workers alongside the technology, ensuring that they are on board in order for the change to be successful.

“The most immediate action is for organisations to realize that this is more than digitisation. It requires synchronising activities for capability building, capability enablement and empowering people. Taking a ‘how to improve a day in the life’ approach will increase engagement, continuous learning and ultimately foster a pull-based approach that will attract tenured workers. They are the best points of contact to identify the best starting points for automation and the required data and digital tools for better decision-making,” said Jacobson.

Long term, “it is important to establish a data-driven culture in manufacturing operations that is rooted in governance and training - without stifling employee creativity and ingenuity,” concluded Gartner.

Discover Gartner's Five Best Practices for Post COVID-19 Innovation' in manufacturing.

Image source

Share article