May 16, 2020

The advancement of women in engineering

women in engineering
Women in STEM
Airedale Springs
3 min
The advancement of women in engineering
Engineering is a sector which is often considered to male-dominated, with some of the most prominent industry leaders being male. However, as the indust...

Engineering is a sector which is often considered to male-dominated, with some of the most prominent industry leaders being male. However, as the industry evolves, and with subsequent societal shifts, there has been a real surge for women in engineering – particularly when it comes to female inventors.

While the national average of female engineers is at around 22 percent of the overall total – a figure which we at Airedale Springs are proud to exceed – it is worth analysing why there is considerably less, and why there has been a relative surge towards the advancement and progression of female engineers in recent years.

How did females feel in the past?

Engineering, currently, is considered a very male-dominated industry, with more than three out of every four engineers actually being male; but, why is this? In the past, some women felt that they wouldn’t be 'welcome' if they were to take up an engineering subject, internship, or apprenticeship, with some of them stating that they feel out of place in mathematical disciplines, such as Maths, Physics, and Chemistry.

It is clear that more must be done to encourage a greater number of women to join the engineering industry. There are undoubtedly some truly brilliant minds that aren’t being utilised to their potential, and while this is awful for the individual, as well as the recognition of the gender’s contribution to the sector, it is also unfortunate for the development and advancement of the industry - not to mention the potential loss of inventions, and subsequent advancements and streamlining of processes.

Most important engineering contributions from women

While a male-dominated industry, there have been a number of women that have made their mark in the sector. One such example is Hedy Lamarr, who was originally a movie star in the 1930s and 40s. However, there was far more to it than just that: Lamarr invented a remote-controlled communications system for the US military in the Second World War. She also developed the frequency hopping theory, which serves as the fundamental thought behind modern communication technologies, such as Wi-Fi networks and Bluetooth.

Another important woman that lead the way in engineering was Emily Roebling, who was the first woman field engineer and technical leader of the construction on the Brooklyn Bridge. This occurred when her husband, Washington Roebling, became paralysed and was unable to work. This meant that she was responsible for the project management of the construction, as well as day to day supervision; a plaque remains in the memory of her at the Brooklyn Bridge.

Controversy in the modern age

It goes without saying that women are more than capable of tackling anything men can do, as history and the present day continues to highlight. While contemporary societies, such as WES, serve to progress female contributions to engineering, 2017 saw a controversial toy released from one of the world’s most iconic toy manufacturers. A new Barbie doll, commonly known as Engineering Barbie, has caused a stir among experts and consumers alike, drawing attention to the fact that it only allows this Barbie to build washing machines and clothing racks, subsequently reinforcing gender stereotypes.

When it comes to encouraging the younger female generation to opt for the engineering sector, this is clearly a misjudged attempt. It’s imperative to teach all potential engineers, regardless of gender, that they are capable of anything, from small gadgets to the largest of infrastructures. For young adults, apprenticeships or gaining knowledge and understanding through academia and University are great ways of providing great access for women to join this ever-growing sector. As such, it will be great to see more budding female engineers dominating the industry.

By Tim Parkinson, Chairman of Airedale Springs


Follow @ManufacturingGL and @NellWalkerMG

Share article

May 11, 2021

5 Minutes With PwC on AI and Big Data in Manufacturing

Georgia Wilson
6 min
PwC | Smart Manufacturing | Artificial Intelligence (AI) | Big Data | Analytics | Technology | Digital Factory | Connected Factory | Digital Transfromation
Manufacturing Global speaks to Kaveh Vessali, PwC Middle East Partner (Digital, Data & AI) on the application of AI and Big Data in Manufacturing

Please could you define what artificial intelligence is, and what Big Data is?

AI is the ability of a machine to perceive its environment and perform tasks that normally require human intelligence, and it’s a whole field of different technologies, techniques and applications. 

Big data is a set of tools and capabilities for working with, for processing, extremely large sets of data. 

How does AI and Big Data work together?

Big data is just one of the enablers of AI, though as we see increasing volumes of data, it’s one of the most important 

How can this be applied to a manufacturing setting?

Broadly speaking, there are many benefits of AI, and the use of data, which include reducing costs, minimising human error, and increasing productivity and efficiency. The important thing to consider is any setting - for the use of any technology - is what is the problem you are trying to solve? Be it merely automating repetitive tasks or to reinventing the nature of work in factories by having humans and machines collaborate in order to make better and faster decisions.  

Why should manufacturers use AI and Big Data when adopting smart manufacturing capabilities, what is the value for manufacturers?

One view is, again, the economic benefits of AI, which come in manufacturing as a result of: 

1. Productivity gains from automating processes and augmenting the work of existing labour forces with various applications of AI technologies. 

2. Increased consumer demand due to the increased ability to personalise and tailor manufactured products, along with higher-quality digital and AI-enhanced products and services. 

Manufacturing (and construction industries) are by nature capital intensive, and in our 2018 report, “The potential impact of AI in the Middle East,” we estimated that the adoption of AI applications could increase the sectors’ contribution to GDP gains by more than 12.4% by 2030. 

How can AI and Big Data help manufacturers to evolve in the Industry 4.0 revolution? What about those already looking at Industry 5.0?

It’s really about the investment you make now, in order to futureproof your business. 

We typically see two broad strategies or approaches to the adoption of AI. There are things that we can do immediately, without any recourse to Big Data - which is to adopt technologies we describe as Sensing, those involving computer vision, for example. There are plenty of use cases where these can be used immediately in manufacturing, such as for automatic fault detection. However, there is a longer term play which requires investing in data - getting the right collection mechanisms in place, storage, data governance, Big Data capabilities etc - in order to develop increasingly valuable machine learning driven AI use cases. This is absolutely necessary for long term adoption success. 

What is the best strategy for organisations looking to realise the value of AI and Big Data in manufacturing?  

AI and Big Data are only one part of a successful smart factory. The organisations that lead on AI adoption are those who have already made the most progress in digitising core business processes. In order get ahead in using AI solutions at scale, there are a number of technology investments and organisational decisions to be made, including: 

1. Digitising processes ultimately leads to improved ability to generate data, and in the manufacturing setting - with many 100s of sensors generating 1000s of measurements in real time, the result is Big Data. Data is key to building AI so reliable and accurate data acquisition, management and governance are key. The production line and factories play a critical and direct role in the data-acquisition process. 

2. AI strategy, both long and short term, begins with the use cases, the business applications. Manufacturers need to ask where they want to use AI and gather these use cases together and prioritising projects based on a balance of expected impact and complexity of implementation. 

Of course, in addition to technology and business processes, people are at the heart of any successful technology adoption. AI teams need to be composed not only of data scientists, also data engineers and solution architects to enable their work, data stewards to ensure accuracy, and increasingly so call “Analytics/AI translators” who are able to communicate with business leaders and technology experts. Culture is also key, and manufacturers need to enable a data and AI-driven culture, building trust in data and algorithms by educating their workforce about AI and its capabilities, how best to extract value. It’s not just the positive of course, but also the risks and limitations, as these when encountered without expectations having been set, can significantly impact willingness to invest. 

What are the challenges when it comes to adopting AI and Big Data in manufacturing?

PwC research has shown that one of the major challenges to implementing AI is uncertainty around return on investment (ROI). As I said, there is significant investment required for a long term data and AI strategy to be successful, and expectations around the time to see tangible returns must be set realistically. 

Many companies also struggle with the data side: collecting and supplying the data that an AI system needs to operate, and ensuring that it is accurate. Again, this speaks to the bigger investments required in digitisation. 

Some of the main challenges for manufacturing companies with implementing AI at a scale from our research include:  

  • 40% → Technologies not mature  
  • 40% → Workforce lacks skills to implement and manage AI  
  • 36% → Uncertain of return on investment  
  • 33% → Data is not mature yet 
  • 32% → lack of transparency and trust  
  • 24% → Work councils and labour unions  
  • 22% → Regulatory hurdles in home & important markets  

One element highlighted here, particularly around lack of trust, and labour unions, is that AI is typically misrepresented in the media as “replacing” workers, and taking jobs. Yes, there are efficiency gains to be made from automation, as there have been since the first industrial revolution. But we believe that Data and AI are at their most valuable when they are used to augment workers, enhancing their abilities and the products being manufactured. 

Another challenge we’re starting to see emerge is cyberattacks increasingly targeting interconnected equipment and machinery in smart factories. PwC recently hosted a webcast, in cooperation with the National Association of Manufacturers in the US and Microsoft to discuss this. 

What are the current trends in AI and Big Data in manufacturing?  

  • We see companies putting slightly more focus on adding AI solutions to core production processes such as the engineering, and assembly and quality testing 
  • Safety is of significant importance, with techniques adopted in protocol adherence capabilities (for example maintaining safe distance from specific machinery) being adopted in more every day scenarios for COVID-19 protocol adherence 
  • There is considerable interest in predictive maintenance for large machinery involved in manufacturing processes, and also supply-chain optimisation

What do you see happening in the AI and Big Data industry in manufacturing in the next 12-18 months? 

Honestly, I think we’ll see a continuance of where we’ve already been going for the last 12- 18 months. AI and data are already being used in manufacturing but this use doesn’t get as much attention in the media as, say, healthcare, but the success stories are there, and they will continue as operations continue their digital journeys. 

Share article