May 11, 2021

5 Minutes With PwC on AI and Big Data in Manufacturing

SmartManufacturing
ArtificialIntelligence
bigdata
Technology
Georgia Wilson
6 min
PwC | Smart Manufacturing | Artificial Intelligence (AI) | Big Data | Analytics | Technology | Digital Factory | Connected Factory | Digital Transfromation
Manufacturing Global speaks to Kaveh Vessali, PwC Middle East Partner (Digital, Data & AI) on the application of AI and Big Data in Manufacturing

Please could you define what artificial intelligence is, and what Big Data is?

AI is the ability of a machine to perceive its environment and perform tasks that normally require human intelligence, and it’s a whole field of different technologies, techniques and applications. 

Big data is a set of tools and capabilities for working with, for processing, extremely large sets of data. 

How does AI and Big Data work together?

Big data is just one of the enablers of AI, though as we see increasing volumes of data, it’s one of the most important 

How can this be applied to a manufacturing setting?

Broadly speaking, there are many benefits of AI, and the use of data, which include reducing costs, minimising human error, and increasing productivity and efficiency. The important thing to consider is any setting - for the use of any technology - is what is the problem you are trying to solve? Be it merely automating repetitive tasks or to reinventing the nature of work in factories by having humans and machines collaborate in order to make better and faster decisions.  

Why should manufacturers use AI and Big Data when adopting smart manufacturing capabilities, what is the value for manufacturers?

One view is, again, the economic benefits of AI, which come in manufacturing as a result of: 

1. Productivity gains from automating processes and augmenting the work of existing labour forces with various applications of AI technologies. 

2. Increased consumer demand due to the increased ability to personalise and tailor manufactured products, along with higher-quality digital and AI-enhanced products and services. 

Manufacturing (and construction industries) are by nature capital intensive, and in our 2018 report, “The potential impact of AI in the Middle East,” we estimated that the adoption of AI applications could increase the sectors’ contribution to GDP gains by more than 12.4% by 2030. 

How can AI and Big Data help manufacturers to evolve in the Industry 4.0 revolution? What about those already looking at Industry 5.0?

It’s really about the investment you make now, in order to futureproof your business. 

We typically see two broad strategies or approaches to the adoption of AI. There are things that we can do immediately, without any recourse to Big Data - which is to adopt technologies we describe as Sensing, those involving computer vision, for example. There are plenty of use cases where these can be used immediately in manufacturing, such as for automatic fault detection. However, there is a longer term play which requires investing in data - getting the right collection mechanisms in place, storage, data governance, Big Data capabilities etc - in order to develop increasingly valuable machine learning driven AI use cases. This is absolutely necessary for long term adoption success. 

What is the best strategy for organisations looking to realise the value of AI and Big Data in manufacturing?  

AI and Big Data are only one part of a successful smart factory. The organisations that lead on AI adoption are those who have already made the most progress in digitising core business processes. In order get ahead in using AI solutions at scale, there are a number of technology investments and organisational decisions to be made, including: 

1. Digitising processes ultimately leads to improved ability to generate data, and in the manufacturing setting - with many 100s of sensors generating 1000s of measurements in real time, the result is Big Data. Data is key to building AI so reliable and accurate data acquisition, management and governance are key. The production line and factories play a critical and direct role in the data-acquisition process. 

2. AI strategy, both long and short term, begins with the use cases, the business applications. Manufacturers need to ask where they want to use AI and gather these use cases together and prioritising projects based on a balance of expected impact and complexity of implementation. 

Of course, in addition to technology and business processes, people are at the heart of any successful technology adoption. AI teams need to be composed not only of data scientists, also data engineers and solution architects to enable their work, data stewards to ensure accuracy, and increasingly so call “Analytics/AI translators” who are able to communicate with business leaders and technology experts. Culture is also key, and manufacturers need to enable a data and AI-driven culture, building trust in data and algorithms by educating their workforce about AI and its capabilities, how best to extract value. It’s not just the positive of course, but also the risks and limitations, as these when encountered without expectations having been set, can significantly impact willingness to invest. 

What are the challenges when it comes to adopting AI and Big Data in manufacturing?

PwC research has shown that one of the major challenges to implementing AI is uncertainty around return on investment (ROI). As I said, there is significant investment required for a long term data and AI strategy to be successful, and expectations around the time to see tangible returns must be set realistically. 

Many companies also struggle with the data side: collecting and supplying the data that an AI system needs to operate, and ensuring that it is accurate. Again, this speaks to the bigger investments required in digitisation. 

Some of the main challenges for manufacturing companies with implementing AI at a scale from our research include:  

  • 40% → Technologies not mature  
  • 40% → Workforce lacks skills to implement and manage AI  
  • 36% → Uncertain of return on investment  
  • 33% → Data is not mature yet 
  • 32% → lack of transparency and trust  
  • 24% → Work councils and labour unions  
  • 22% → Regulatory hurdles in home & important markets  

One element highlighted here, particularly around lack of trust, and labour unions, is that AI is typically misrepresented in the media as “replacing” workers, and taking jobs. Yes, there are efficiency gains to be made from automation, as there have been since the first industrial revolution. But we believe that Data and AI are at their most valuable when they are used to augment workers, enhancing their abilities and the products being manufactured. 

Another challenge we’re starting to see emerge is cyberattacks increasingly targeting interconnected equipment and machinery in smart factories. PwC recently hosted a webcast, in cooperation with the National Association of Manufacturers in the US and Microsoft to discuss this. 

What are the current trends in AI and Big Data in manufacturing?  

  • We see companies putting slightly more focus on adding AI solutions to core production processes such as the engineering, and assembly and quality testing 
  • Safety is of significant importance, with techniques adopted in protocol adherence capabilities (for example maintaining safe distance from specific machinery) being adopted in more every day scenarios for COVID-19 protocol adherence 
  • There is considerable interest in predictive maintenance for large machinery involved in manufacturing processes, and also supply-chain optimisation

What do you see happening in the AI and Big Data industry in manufacturing in the next 12-18 months? 

Honestly, I think we’ll see a continuance of where we’ve already been going for the last 12- 18 months. AI and data are already being used in manufacturing but this use doesn’t get as much attention in the media as, say, healthcare, but the success stories are there, and they will continue as operations continue their digital journeys. 

Share article

May 4, 2021

Symbio Robotics/Ford: AI-enabled robotics in manufacturing

Robotics
FactoryoftheFuture
AI
Automation
Georgia Wilson
2 min
Smart Manufacturing | AI | Automation | FActory of the Future | Innovation | Automotive Manufactury | DIgital Factory | Ford Motor Company | Symbio Robotics
Symbio Robotics reduces complexity and increases safety at Ford Motor Company's Livonia transmission plant with an AI-controlled robot...

From making roads safer, to accelerating autonomous vehicles, increasing electrification and harnessing 5G connectivity, Ford Motor Company is nothing but a driver of innovation and adopter of advanced technologies.

Following Ford Motor Company’s reporting of stronger results for 2021 Q1, Symbio Robotics releases details on its work with the automotive manufacturer to deploy an AI-controlled robot at Ford’s Livonia Transmission Plant. 

The next frontier of manufacturing

undefined

Founded in 2014, Symbio Robotics helps manufacturers to increase their factory efficiency by automating processes that before, could only be done manually. Through its combination of artificial intelligence (AI) and industrial robotics, Symbio Robotics is a pioneer for “the next frontier of manufacturing.”

Building automations that enable human and machine collaboration, Symbio Robotics’ designs technology to mitigate existing manufacturing pain points. “Through the use of AI applied by people, the robots quickly learn and execute tasks increasing efficiency, improving quality and reducing ergonomic hazards,” says Symbio Robotics.

undefined

Ford Motor Company harnesses Symbio Robotics technology

Deployed at its Livonia Transmission Plant, Symbio Robotics’ robot deployed at the plant is programmed and managed with Symbio’s robot-agnostic platform (SymbioDCS) to assemble transmissions for Ford’s Bronco Sport, Escape and Edge.

With the assembly process for transmissions being renowned for its complexity from an efficiency and safety standpoint, many manufacturers have taken to automating the challenging possess. 

Helping Ford to reduce complexities, and increase efficiency and safety, Ford has seen a 15% cycle time improvement compared to its previous method for transmission torque converter assembly. Collecting large amounts of data, Symbio Robotics AI-controlled robot installs components into the transmission, predicting how it should assemble the next components based on previous performance.

“Symbio’s focus is on delivering technology that allows companies like Ford to adopt AI as a core competency. AI-enabled automation looks very different. It's not just about automation, it's about providing tools that empower automation teams to deploy and maintain more general, flexible systems,” said Max Reynolds, CEO and co-founder, Symbio Robotics. 

“As the mobility landscape continues to rapidly change there is an increasing demand for much faster product life cycles. Using the Symbio technology, we’ve observed a 15% improvement in cycle time and greater than 50% reduction in adapting to new products over the previous manufacturing method," said Harry Kekedjian, Advanced Controls and Digital Factory Manager, Ford.

Share article